Math 300: Midterm 2 Instructor: Dr. Palmer, Spring 2019

Name & ID:

Solutions!

April 17, 2019
100 points possible
80 minutes time limit
Remember to make your proofs and arguments as clear as possible
Show your work!

Notation:	
Ø	empty set
$\mathbb R$	set of real numbers
$\mathbb Q$	set of rational numbers
$\mathbb Z$	set of integers
\mathbb{N}	set of natural numbers
\mathbb{Z}_m	the integers modulo m
Dom(R)	domain of the relation R
$\operatorname{Rng}(R)$	range of the relation R
$f \colon A \to B$	function from A to B
surjective	onto
injective	one-to-one

Good luck!

$$\frac{1}{(12)} + \frac{1}{(10)} + \frac{1}{(14)} + \frac{1}{(10)} + \frac{1}{(16)} + \frac{1}{(12)} + \frac{1}{(14)} + \frac{1}{(14)} = \frac{1}{(100)}$$

Problem 1. Computations. (12 points - 4 points each)

(a) What is the lowest positive integer equivalent to 4^{62} modulo 7? (Your answer should be an integer between 0 and 6, inclusive).

Notice

$$4^2 = 1b = 2 \pmod{7}$$

 $4^3 = 2 \cdot 4 = 1 \pmod{7}$. $\rightarrow 4^{60} = (1)^{20} = 1 \pmod{7}$
 $\rightarrow 4^{62} = (4)^{60} \cdot 4^2 = 2 \pmod{7}$

(b) What is the remainder when $(802) \cdot (1679)$ is divided by 8?

$$802 = 800 + 2 \implies 802 = 2 \pmod{8}$$

 $1679 = 1680 - 1 \implies 1679 = 7 \pmod{8}$

(c) Let $x \in \mathbb{Z}$ with $0 \le x \le 11$ and $5x = 2 \mod 12$. Find x.

So
$$5x=2 \pmod{12} \Rightarrow 5(5x)=5(2) \pmod{12}$$

 $\Rightarrow 25x=10 \pmod{12}$

$$= 7$$
 $25x = 10$ mod 12.

$$\sqrt{x=10}$$

Problem 2. State whether the following is **true** or **false**, and then **prove your answer**. (10 points - 5 points each)

(a) Let $x, y \in \mathbb{Z}$. Prove or disprove $5x = 5y \mod 10$ implies $x = y \mod 10$.

FALSE.

Pf: Let
$$x=1$$
 and $y=3$.
Then $5x=5(1)=5 \pmod{10}$
and $5y=5(3)=15=5 \pmod{10}$
So $5x=5y \pmod{10}$ be cause $1 \neq 3$
but $x \neq y \pmod{10}$ be cause $1 \neq 3$
 $1 \neq 3$

(b) Let $x, y \in \mathbb{Z}$. Prove or disprove: $5x = 5y \mod 9$ implies $x = y \mod 9$.

TRUE

Pf: Suppose
$$X_{iy} \in \mathbb{Z}$$
 with $5x = 5y \pmod{9}$.
Then $2(5x) = 2(5y) \pmod{9}$
 $\Rightarrow 10x = 10y \pmod{9}$
 $\Rightarrow X = y \pmod{9}$
Since $10 = 1 \pmod{9}$.

Problem 3. Let $A = \{1, 2, 3, 4\}$ and $B = \{100, 101, 102\}$. Let $R, S \subset A \times B$ be given by $R = \{(1, 100), (1, 101), (2, 102), (3, 102), (4, (100))\}$ and $S = \{(1, 102), (2, 101), (3, 100)\}$. (14 points)

(a) Find Dom(R) and Dom(S). (3 points)

$$Dom(R) = \{1, 2, 3, 4\}$$

 $Dom(S) = \{1, 2, 3\}$

(b) Find Rng(R) and Rng(S). (3 points)

Rng (R) =
$$\{100, 101, 102\}$$

Rng (S) = $\{100, 101, 102\}$

(c) Prove or disprove: R is a function from A to B. (4 points)

(d) Prove or disprove: S is a function from A to B. (4 points)

FALSE .

Problem 4. Answer the following. (10 points - 5 points each)

(a) Let $A = \{1, 2, 3, 4\}$ and $\mathcal{P} = \{\{1\}, \{2, 3, 4\}\}$. Find the relation R on A associated to the partition \mathcal{P} . (Give R as a set of ordered pairs)

$$R = \left\{ (1,1), (2,2), (3,3), (4,4), (2,14), (2,14), (4,12), (3,14), (4,13) \right\}$$

(6,5)

(b) Let $B = \{5, 6, 7, 8\}$ and let $S \subset B \times B$ be given by $S = \{(5, 6), (5, 5), (6, 6), (7, 7), (8, 8)\}$. The relation S is an equivalence relation (you don't have to show this). Find the partition associated to S.

Problem 5. For each relation drawn as a graph below, answer the following "yes" or "no": (16 points - 4 points for each graph)

(a) Is is reflexive? (b) Is it symmetric? (c) Is it transitive? (d) Is it an equivalence relation?

- (a) 100
- (b) No
- (c) yes
- (d) No

- (a) yes
- (b) yes
- (c) yes
- (d) yes

- (a) yes
- (p) **\(\sigma_0\)**
- (c) yes
- (d) **N**O

- (a) No
- (b) yes
- (c) **No**
- (d) No

Problem 6. Let $X = \{1, 2, 3\}$. Give an example of each of the following types of relations on X, write them as a list of ordered pairs or draw a directed graph. (12 points - 3 points each)

(a) Given an example of a relation R on X which is symmetric and reflexive but not an equivalence relation.

- $R = \{ (1,1), (2,2), (3,3) \}$ $\{ (1,2), (2,1), (2,3), (3,2) \}$
- (b) Given an example of an equivalence relation S on X.

$$S = \{ (1,1), (2,2), (3,3), (1,2), (2,1) \}$$
 (There are many answers!)

(c) Given an example of a function $f: X \to X$ which is **not** a bijection.

$$f = \{(1,1), (2,1), (3,3)\}$$

X

1

2

1

2

3

3

(d) Given an example of a bijection $g: X \to X$ which is not equal to the identity function, I_X .

$$g = \{ (1,2), (2,1), (3,3) \}$$

Problem 7. Let A, B be sets. Let $f: A \to B$ be a function from A to B. (14 points)

(a) By definition, what does it mean to say that the function g is the inverse of f? (That is, I am asking you to state the definition of an inverse function) (6 points)

(b) Suppose that f is an invertable function with inverse given by the function g. Show that f is a bijection. (Hint: There should be two parts to the proof: showing that fis one-to-one and showing that f is onto) (8 points)

Pf: Suppose f: A -> B is an invertable function

with inverse g.
To show I injective, let xiy A with

for = f(y). Applying , to both sides given

Since gof = IA this implier x=y.

To show f surjective let y & B be arbitrary.

Define teA by g(y). Thun f(t) = fog(u) - ...

Problem 8. Prove the following. (14 points)

- (a) Let X, Y, Z be sets. Let $u: X \to Y$ and $v: Y \to Z$ both be onto. Prove that $v \circ u \colon X \to Z$ is also onto. (6 points)
- Pf: Let u, v be as in the statement.

$$v \circ u(a) = v(u(a)) = v(b) = y$$
.

(b) Let
$$A, B, C$$
 be sets. Let $f: A \to B$ and $g: B \to C$ be functions such that f is onto the set B and $g \circ f: A \to C$ is one-to-one. Prove that g is one-to-one. (8 points)

W

the set
$$B$$
 and $g \circ f: A \to C$ is one-to-one. Prove that g is one-to-one. (8 point $Pf: Ltf f, g$ be as in the statement.

Let Xiy & B with
$$g(x) = g(y)$$
 and we will show $x = y$.

Since f is only
$$g(f(a)) = g(f(b)) \neq g \circ f(a) = g \circ f(b)$$

Since
$$f$$
 is one.

Thus
$$g(x) = g(f(a)) = g(f(b)) \neq g \circ f(a) = g \circ f(b)$$

$$\Rightarrow a = b$$
Since f is one.