Math 300: Midterm 2  INSTRUCTOR: DR. PALMER, SPRING 2019

Name & ID: S@\vv\ "bw }

April 17, 2019
100 points possible
80 minutes time limit
Remember to make your proofs and arguments as clear as possible
Show your work!

Notation:
5] empty set
R set of real numbers
Q set of rational numbers
Z set of integers
N set of natural numbers

Loy, ~ the integers modulo m
Dom(R) domain of the relation I
Rng(R) range of the relation R

f: A— B  function from A to B

surjective onto
injective one-to-one
Good luck!
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Problem 1. Computations. (12 points - 4 points each)

(a) What is the lowest positive integer equivalent to 4% modulo 77 (Your answer should
be an integer between 0 and 6, inclusive).
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(b) What is the remainder when (802) - (1679) is divided by 87
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(c) Let x € Z with 0 < z < 11 and 5z = 2 mod 12. Find z.

Neie §5.5=125=1 (md ()

N od 12

G By-2 ed12) = G(EN5(2)
—> J5x= |0 ped 12
—7 x= [0 ,mw( (2 .

2




Problem 2. State whether the following is true or false, and then prove your
answer. (10 points - 5 points each)

5z = 5y mod 10 implies z =y mod 10.

(a) Let z,y € Z. Prove
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(b) Let z,y € Z.mr disprove: 5z = 5y mod 9 implies z =y mod 9.
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Problem 3. Let A= {1,2,3,4} and B = {100, 101,102}. Let R, S C A x B be given
by R = {(1,100), (1,101), (2,102), (3, 102), (4, (100)} and
S = {(1,102), (2,101), (3,100)}. (14 points)

(a) Find Dom(R) and Dom(S). (3 points)
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(b) Find Rng(R) and Rng(S). (3 points)
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(c) Prove or disprove: R is a function from A to B. (4 points)
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(d) Prove or disprove: S is a function from A to B. (4 points)
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Problem 4. Answer the following. (10 points - 5 points each)

(a) Let A = {1,2,3,4} and P = {{1},{2,3,4}}. Find the relation R on A associated
to the partition P. (Give R as a set of ordered pairs)
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(b) Let B = {5,6,7,8} and let S C Bx B begiven by S = {(5,6), (5,5)46,6), (7,7), (8,8)}.
The relation S is an equivalence relation (you don’t have to show this). Find the par-
tition associated to S.
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Problem 5. For each relation drawn as a graph below, answer the following “yes” or
“no”: (16 points - 4 points for each graph)

(a) Is is reflexive? (b) Is it symmetric? (c) Is it transitive? (d) Is it an equivalence
relation?
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Problem 6. Let X = {1,2,3}. Give an example of each of the following types of
relations on X, write them as a list of ordered pairs or draw a directed graph. (12
points - 3 points each)

(a) Given an example of a relation R on X which is symmetric and reflexive but not

an equivalence relation. »
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(b) Given an example of an equivalence relation S on X.
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(c) Given an example of a function f: X — X which is not a bijection.
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(d) Given an example of a bijection g: X — X which is not equal to the identity
function, [x.
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Problem 7. Let A, B be sets. Let f: A — B be a function from A to B. (14 points)

(a) By definition, what does it mean to say that the function g is the inverse of f7
(That is, I am asking you to state the definition of an inverse function) (6 points)
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(b) Suppose that f is an invertable function with inverse given by the function g. Show

that f is a bijection. (Hint: There should be two parts to the proof: showing that f
is one-to-one and showing that f is onto) (8 points)
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Problem 8. Prove the following. (14 points)

(a) Let X,Y,Z be sets. Let u: X — Y and v: Y — Z both be onto. Prove that

vou: X — Z is also onto. (6 points)
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(b) Let A, B,C be sets. Let f: A— B and g: B — C be functions such that f is onto
the set B and go f: A — C is one-to-one. Prove that g is one-to-one. (8 points)
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